
Abstract. A computer program for the calculation of
the MP2 energy correction for a Kramers-restricted
Dirac-Hartree-Fock four component wave-function is
presented. In the spirit of the integral-driven direct SCF
scheme the algorithm has been developed as direct MP2,
calculating integrals as they are needed and avoiding the
integral storage bottle-neck of conventional MP2.
Relativistic MP2 is applied to ground state �1R�� CuF,
AgF and AuF.
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1 Introduction

Over the last 10 years there has been a steady
development of methods and software for four-compo-
nent relativistic calculations for molecules. Today there
are a number of codes available [1±7] that can perform
Dirac-Hartree-Fock (DHF) calculations for general
polyatomic molecules using standard quantum chemical
approaches based on an analytic expansion of the
wavefunction in a ®nite basis set. These DHF calcula-
tions are extremely useful for calibration purposes and
also give realistic descriptions of some molecular sys-
tems. In general, however, the independent particle
approximation inherent in the DHF approach has the
same shortcomings as for the non-relativistic (NR) case,
and one needs to look beyond this for methods that
account for electron correlation.

The ®rst successful approach to a four-component
treatment of correlation in polyatomic molecules was
implemented in the relativistic CI code in MOLFDIR
[8, 9]. However, the spin-orbit coupling in systems con-
taining heavy atoms frequently leads to problems asso-
ciated with near degeneracies and non-dynamical
correlation e�ects, and thus a multicon®guration ap-

proach along the lines of the non-relativistic MC SCF
methods is really required for an adequate treatment of
some of these systems. The principles of multicon®gu-
ration DHF (MC DHF) calculations have been discus-
sed in recent work by Jensen et al. [10].

Unfortunately, four-component CI and MC DHF
calculations will be very costly even with greatly reduced
active spaces, and it is therefore of interest to investigate
also other approaches to a relativistic treatment of cor-
relation. For molecules where a single reference DHF
wavefunction yields a reasonable description of the
ground state, coupled cluster (CC) methods provide an
attractive alternative for the treatment of dynamical
correlation [11, 12]. Very accurate results are obtained in
these CC calculations, but again these are rather
expensive and place high demands on computational
resources. A cheaper approach at a less accurate level
than CC is provided by second-order Mùller-Plesset
perturbation theory (MP2) [13], which has been applied
by Dyall for Kramers-restricted DHF reference wave-
functions (RMP2), both for closed and open shell
systems [14].

One advantage of the MP2 approach is that it is
possible to implement it in an integral-driven direct
version. For non-relativistic quantum chemistry, direct
methods with recalculation of two-electron integrals
have been used in calculations on large systems where
the storage and retrieval of a large number of integrals
would constitute a major bottleneck [15±17]. This
becomes even more crucial for relativistic calculations
where the number of integrals increases as a consequence
of the increase in the number of basis functions required
to describe both large and small spinor components in a
balanced fashion [18, 19]. The advantages of direct al-
gorithms for DHF calculations have been demonstrated
in recent applications by Saue and coworkers [7].

In this work we extend the direct approach to RMP2
calculations, and describe the implementation of a
Kramers-restricted RMP2 algorithm for general molec-
ular calculations. In the next section we brie¯y summa-
rize the theoretical foundation of the Kramers-restricted
RMP2. On the basis of this we describe an algorithm
for such calculations and discuss its implementation
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(Sect. 3). We then present computational results ob-
tained in the application of direct RMP2 in calculations
on the ground states �1R�� of the coinage metal ¯uor-
ides ± CuF, AgF and AuF.

2 Theory

The second quantized NR Hamiltonian in terms of spin-
orbitals and the Dirac-Coulomb (DC) Hamiltonian in
terms of molecular spinors have the same form,
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The summation in the DC expression is restricted to
electron solutions only. This corresponds to the no-pair
approximation, which is an implicit projection of the
Hamiltonian onto the positive energy space, so that
creation of virtual positron-electron pairs is neglected. In
the relativistic expression the operator h is the one-
electron Dirac Hamiltonian described in standard text-
books [20, 21]. The Coulomb operator g is the zeroth
order approximation (in terms of the ®ne structure
constant) to the fully relativistic frequency dependent
electron-electron interaction. Higher-order terms in this
expansion arising from the Breit (or Gaunt) interaction
are not considered in this work.

Owing to the formal similarity of the Hamiltonians in
the non-relativistic and relativistic case, the methods for
treating correlation may be transferred directly from the
NR case. The MP2 [13] energy expression is
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both in non-relativistic and relativistic theory. Here we
have introduced the anti-symmetrized two-electron inte-
grals, and the integrals �IA j JB� are given in Mulliken
notation. The two-electron integrals, which are expressed
in terms of spin-orbitals in NR theory, refer to molecular
four-spinors in relativistic theory. Indices I and J refer to
occupied spinors and A and B to virtual spinors.

The NR reduction of the MP2 energy in terms
of spin-orbitals to a sum over real molecular (space)
orbitals may be found in standard textbooks [22]. Owing
to spin function orthogonality, the expression in Eq. (2)
simpli®es to
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where we introduce
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as a convenient notation for the energy denominator.
The computational evaluation of this energy expression
involves a four-index transformation of two-electron
integrals from a basis of real atomic functions (AO-
basis) to real molecular orbitals (MO-basis)
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In relativistic theory the inclusion of time-reversal sym-
metry introduces Kramers pairs of molecular spinors
�/i;/i�, the relativistic equivalents of molecular spin-
orbitals �/ia;/ib�. However, the convenient spin orthog-
onality of the NR case is lost, as there is no general
orthogonality between opposite members of di�erent
Kramers pairs, e.g. /i and /j when i 6� j. The four-

component molecular spinor /i is in general complex,
but may be expanded in sets of real scalar basis functions
�vL� and �vS � for the large and small components
respectively, chosen to satisfy the appropriate conditions
of kinetic balance [18, 19],
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Operation on the spinor with the time reversal operator
K̂ generates the Kramers partner of /i,
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As pointed out above, unlike the molecular spin-orbitals
in NR theory, the barred and unbarred spinors are not
in general orthogonal. The reduction of the sum over
spinors in Eq. (2) into a sum over Kramers pairs gives
the expression
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in terms of anti-symmetrized two-electron integrals. The
molecular orbital two-electron electron repulsion inte-
grals (MO ERI) are expanded in real atomic basis
functions,
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Here X,Y denote Large, Small and r; c denote a; b; and
the following conventions are used:
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sign�X ; r� �
ÿ1 if (X = L and r � a) or

(X = S and r � b�
1 else

(

opp�r� � a if r � b
b if r � a

�
:

The types of two-electron integrals over scalar basis
functions needed in the calculation are �LLjLL� , �LLjSS�
and �SSjSS� where L and S denote a function from the
sets �vL� and �vS � respectively. The other integral types
in Eq. (8) give similar expressions to those in Eq. (9)
and are easily deduced from the equations above. As
described by Dyall [14], several of these integral types
give no contribution for certain point group symmetries.
In the present work we have not exploited possible
computational savings owing to symmetry, and all
molecular integrals are calculated.

3 Implementation

The bottleneck in the MP2 calculation is the transfor-
mation of scalar two-electron atomic orbital electron
repulsion integrals (AO ERI) to MO ERI over molecular
orbitals in Eq. (5) or molecular spinors in Eq. (9). In the
simplest conventional MP2 scheme, the AO ERI are
stored on disk and the transformation performed in four
successive 1/4-transformations. The ®rst transformation
is the most expensive, and the computational cost is
ON 4, where N is the number of basis functions and O the
number of electrons in the occupied space.

Compared with the NR calculation the four-index
transformation in the RMP2 calculation is more ex-
pensive owing to several factors:

1. The algebra involved is complex
2. A total of 8 di�erent types of integrals are needed as

seen from Eq. (8).
3. The spinors have four components.
4. For the same type of system, the relativistic calcula-

tions employ larger basis sets owing to the need to
include the small components and the requirement of
kinetic balance. [7, 19, 23].

To avoid the integral storage bottleneck in the conven-
tional MP2 scheme, algorithms for direct and semi-
direct MP2 have been developed by Head-Gordon et al.
[16] and by Sñbù and AlmoÈ f� [17]. In a slightly modi®ed
scheme, the algorithm in [16] may be schematically
described as:

Loop over batches of MO I; J
Calculate AO ERI
Transform of 3/4-transformed ERI
Accumulate in MP2 energy �E�2��

End Loop.

The size of the batches of I and J is determined by the
available memory. Large calculations may be feasible by
splitting up the calculation in several batches with size I ,
whereas smaller calculations may be performed with a
single batch of occupied MO.

The relativistic algorithm used by us in the present
work is slightly more complicated as E�2� must be cal-
culated from molecular four-spinor (MS) ERI

(Scheme 1):

Loop over types �LLjLL�, �LLjSS� and �SSjSS�
Loop over batches of MS I ; J
Calculate AO ERI and transform
Accumulate in MS array

End Loops
Calculate E�2�:

A detailed description of the Kramers-restricted direct
RMP2 algorithm is given in Fig. 1. Instead of adding
ERI contributions directly to E�2�, the ERI are accu-
mulated in an MS array with size of order O2V 2�V
is the number of virtual positive energy spinors). As in
the NR direct MP2 algorithm of Head-Gordon et al.
[16], the loop over R; S-shells is not closed until after
the 3/4-transformation. This prevents the exploitation
of the permutational symmetry � pqjrs� � �rsjpq� of
the AO ERI, and the integrals therefore have to be
calculated twice for every batch of occupied
spinors. This is also the reason why the relativistic
scheme stores the MS array in internal memory as it is
then simple to exploit the �SSjLL�=�LLjSS� symmetry of
the integrals.

Changing the order of the two outer loops
(Scheme 2) gives a less memory-demanding scheme at
the cost of having to calculate both the �SSjLL�- and
�LLjSS�-integrals, and this is therefore a choice between
a memory- and CPU-demanding scheme. An advan-
tage of the direct MP2 scheme of Head-Gordon et al.
[16] is that it is fairly easy to parallelize the algorithm
e�ciently, as shown recently by Nielsen and Seidl [24].
For a relativistic parallel code with limited internal
memory on each node, Scheme 2 would possibly be the
best choice.

Scheme 1 has a limiting memory requirement of
I2V 2 � I2VN , where I � O if su�cient memory is avail-
able to perform the calculation with only one I; Jÿ
batch. After the array of MS ERI has been completed,
the contribution to the MP2-energy from this batch of
molecular spinors is easily calculated, a step that is fast
and very cheap compared to the four-index transfor-
mation.

As long as one is not doing extremely accurate cor-
related calculations of chemical properties, only the va-
lence and sub-valence electrons need be considered. In
relativistic calculations one is frequently interested in
systems containing heavy elements, and for such systems
the core electrons often constitute the larger part of the
total number of electrons in the system. The elimination
of these core electrons from the active space in correlated
calculations signi®cantly reduces the size of the calcu-
lation.

The algorithm described in Fig. 1 has been imple-
mented in a computer program, and the program has
been tested by comparing calculations on small mole-
cules such as CH4 and HF in the NR limit with corre-
sponding calculations carried out using the NR program
GAMESS-UK [25]. Results in the NR limit have been
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obtained from the relativistic program by setting a large
value (104 in atomic units) for the speed of light. As
in DIRAC [7], the integrals are calculated with the
HERMIT program [26]. The direct RMP2 program is
now running on IBM RS6000 workstations, and all the
calculations have been performed on IBM RS6000 590
and 990 workstations.

With the present implementation of the RMP2 the
total time needed for the RMP2 calculation is of about
the same as for the total DHF calculation. Work is now
in progress to upgrade the program to take advantage
of the point group symmetry of the molecules. It is
expected that this will speed up the calculations signi®-
cantly, and the RMP2 calculation should eventually re-
quire only a small fraction of the CPU time for the full
direct DHF calculation.

4 Calculations

PyykkoÈ and Desclaux [27] have pointed out that for a
given row of the periodic system, relativistic e�ects on
bond lengths and vibrational frequencies appear to be
largest for the coinage metals (the `gold maximum'). The

usual explanation is the important 6s contribution to the
bonding of Au and the contraction of the s-spinors
owing to relativity and ine�cient screening by the
5d-electrons. The contraction of the s-spinors is greater
than the contraction of spinors belonging to other
symmetries. This would appear to make the coinage
metal halides an interesting testing ground for relativistic
MP2 calculations. In this work we have studied the
¯uorides CuF, AgF, and AuF. The properties of the
ground state hydrides have already been investigated
with similar methods by Collins et al. [28].

Coinage metal ¯uorides have been studied previously
by a number of investigators using various theoretical
models. Thus CuF has been the subject of CISD and
Mùller-Plesset perturbation calculations to fourth
order (MP4) with near-Hartree-Fock limit basis sets
by Schwerdtfeger et al. [29] and MRCI calculations
by RamõÂ rez-SolõÂ s and Daudey [30]. RamõÂ rez-SolõÂ s and
Schamps [31] have studied AgF using the pseudopoten-
tial method with a high quality valence basis set and
an MRCI-MP2 treatment of correlation. For AuF
pseudopotential calculations have been performed by
Schwerdtfeger et al. [32±34]. These calculations use high-
quality valence basis set and also include correlation by

Fig. 1. Algorithm (scheme 1) for
direct relativistic MP2 (RMP2)
with order of magnitude estimates
of memory requirements and ¯oat-
ing point operations in each step
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many-body perturbation theory (MP2, MP3 and MP4)
and single reference CCSD and CCSD(T). Correlation
e�ects have thus already been studied at a high level of
theory for these compounds, but the relativistic e�ects
have only been accounted for through relativistic pseu-
dopotentials [30±34] or a ®rst-order perturbation esti-
mate of the mass-velocity and Darwin terms (MVD-
approximation) [29]. In this study we present calcula-
tions for the ground state �1R�� of CuF, AgF and AuF
using moderately sized basis sets in fully relativistic
DHF calculations, and with correlation treated at the
MP2-level.

4.1 Computational details

Basis sets of dual family type were optimized for the
coinage metal atoms using the non-relativistic program
TANGO [35]. One (Cu, Ag) or two (Au) high-exponent
p-functions were added to give a better description of the
2p1

2
spinor. These additional exponents were optimized

using a simple stepwise search and the program GRASP
[36] modi®ed for basis set calculations [3] for the atomic
con®guration �nÿ 1�d10ns1 of the atoms. The basis sets
were supplemented with 2 (Cu, Ag) or 3 (Au) di�use
p-functions, 1 d-function and 3 (Cu), 4 (Ag) or 2 (Au)
f-functions. With these basis sets the deviation of the
energy from the relativistic Hartree-Fock limit was
15:6 � 10ÿ3 a.u., 16:0 � 10ÿ3 a.u. and 125:8 � 10ÿ3 a.u. for
Cu, Ag, and Au respectively.

The bond in the coinage metal ¯uorides in strongly
polar owing to the large electronegativity of ¯uorine. To
obtain a basis set that could describe the strong polar-
ization in the molecule, a ¯uorine 9s6p basis set was
optimized using TANGO [35] for the negative ion Fÿ
and augmented with 2d-functions. Test MP2 calcula-
tions on LiF showed this to be a balanced basis set and
that more d-functions gave no signi®cant improvement
in the energy.

The Cartesian Gaussian basis sets have been used
uncontracted and have ®nal sizes for the large com-
ponent basis of 16s14p9d3f (Cu), 20s17p12d4f (Ag),
22s20p14d10f (Au), and 9s6p2d (F) (Tables 1±4). The
basis sets for the small (S) components have been gen-
erated from the large component sets (L) using the un-
restricted kinetic balance condition [7, 23]. The total
number of basis functions is 557, 676 and 896 for CuF,
AgF and AuF respectively.

For the non-relativistic SCF and MP2 calculations
GAUSSIAN 92 [37] was used for CuF and AgF. The
NR properties of AuF were calculated with Noga and
Klopper's DIRCCR12-95 code [38]. In the relativistic
calculations the Kramers-restricted, Dirac-Hartree-Fock
closed-shell wavefunctions were generated in the DIR-
AC [7] program with a direct DHF algorithm. Finite-size
Gaussian nuclei were used (Tables 1±4). The exponents
for the Gaussian nuclei have been generated as described
by Dyall et al. [3].

In the MP2 calculations the active virtual space for
correlation was restricted to Kramers pairs with energy
less than 100 atomic units (a.u.), giving an active virtual
space of 113, 126, 139 Kramers pairs for the 3 systems in

the RMP2 calculations. The active occupied space in-
cluded the 18 valence electrons. Calculations where the
subvalence ns�nÿ 1�p spinors were included for a total
of 26 electrons in the active space were also performed.

Geometry optimization was carried out through
stepwise variation of the metal ¯uorine bond distance.
The energy was calculated at several bond lengths
around the equilibrium �re�, and force constants were
calculated by a quadratic ®t to 3 points at r � re and
r � re � 0:01 AÊ . For relativistic AuF with 26 electrons
correlated the energy was calculated at re and at 3
points with a spacing of 0.02 AÊ around re. The force
constant was then calculated from a cubic ®t. The

Table 1. Dual family basis set and Gaussian nucleus exponent for
Cu. The exponents for d- and f-functions are marked in the s- and
p-exponent set

Cu, s and p exponents:

773890.981 41300.00000
115957.966 6294.85104
26389.7471 1491.72487
7471.91123 483.50607
2434.76613 183.652452
875.567861 76.9761603
337.463142 34.2443702
136.031615 (d) 15.8260699
54.9799838 (d) 7.38254008 ( f )
23.0394386 (d) 3.31453805 ( f )
98.847061 (d) 1.41929959 ( f )
4.18791620 (d) 0.558513822
1.68470868 (d) 0.170000000
0.624808942 (d) 0.049000000
0.202890599 (d)
0.052726332 (d)

Gaussian nucleus exponent: 2.76836 á 108

Table 2. Dual family basis set and Gaussian nucleus exponent for
Ag. The exponents for d- and f-functions are marked in the s- and
p-exponent set

Ag, s and p exponents:

10170633.2 205000.000
1523109.59 30568.0033
346619.456 7239.55182
98170.8513 2350.55536
32015.7325 897.944491
11539.4904 380.120972
4473.0654 172.659937
1822.98695 82.2017109
768.19299 (d) 40.3707460
333.034012 (d) 19.7645648
147.079718 (d) 9.76105823
64.1605984 (d) 4.87962949 ( f )
29.5320182 (d) 2.22809405 ( f )
13.7938975 (d) 0.995074617 ( f )
6.48144012 (d) 0.403846107 ( f )
2.93475388 (d) 0.162000000
1.27714335 (d) 0.065000000
0.507816839 (d)
0.178191524 (d)
0.0464943888 (d)

Gaussian nucleus exponent: 2.03996 á 108
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vibrational frequencies were calculated from the force
constants and the reduced masses listed by Huber and
Herzberg [39].

4.2 Results and discussion

The calculated DHF and RMP2 bond lengths �re� and
vibrational frequencies �xe� are presented in Table 5.
For comparison we also list results from non-relativistic
calculations and experimental results for CuF and AgF.
AuF has only very recently been detected [40], and no
experimental bond lengths or vibrational frequencies are
known to the authors.

Owing to the many low-lying con®gurations in tran-
sition metal atoms, multireference calculations are often
required to account for the non-dynamical correlation
in transition metal compounds. MRCI calculations

by RamõÂ rez-SolõÂ s and Daudey [30] and RamõÂ rez-
SolõÂ s and Schamps [31] have shown that the model
Me���nÿ 1�d10�Fÿ�2p6� (Me = Cu, Ag) provides a
good description of the X 1R� ground state of MeF. The
CI-coe�cient for this con®guration was found to be 0.97
(CuF) [30] and 0.98 (AgF) [31], and one should not ex-
pect any dramatic changes in the correlation contribu-
tions for AuF. Non-dynamical correlation should
therefore be of minor importance for these systems, and
we expect the single reference MP2 method to account
for the bulk of the correlation energy in the active
space. This is supported by comparison with the AuF
pseudopotential calculations by Schwerdtfeger et al. [34]
where MP2 results are compared with high-quality
treatment of correlation at the CCSD(T)-level.

The DHF calculations were always performed with
all ERI included. Neglecting the �SSjSS� ERI in RMP2
calculations on AuF and AgF with 16 valence electrons
in the active space gave a vertical shift in the calculated
potential energy curve of 0:56 � 10ÿ6 a.u. for AuF and
0:39 � 10ÿ6 a.u. for AgF, but had no e�ect on the shape
of the curve. This demonstrates that leaving out the
�SSjSS� integrals in RMP2 calculations has a negligible
e�ect on the calculated bond lengths and vibrational
frequencies. The remaining RMP2 calculations were
therefore performed without the �SSjSS� ERI.

Our results are not corrected for basis set superposi-
tion errors (BSSE). A counterpoise correction calcula-
tion [41] requires open shell facilities that at present are

Table 3. Dual family basis set and Gaussian nucleus exponent for
Au. The exponents for d- and f-functions are marked in the s- and
p-exponent set

Au, s and p exponents:

40388037.5 2250000.00
6047994.46 320000.000
1376359.95 60387.3360
389821.512 14304.8139
127125.247 4640.21919
45806.4475 1767.01464
17736.1093 742.207018
7209.37728 331.722681 ( f )
3026.14748 (d) 154.856063 ( f )
1308.48872 (d) 74.2153330 ( f )
582.871920 (d) 35.8536792 ( f )
259.343171 (d) 17.3725114 ( f )
122.675842 (d) 8.31276028 ( f )
59.6823221 (d) 3.89830437 ( f )
29.6374681 (d) 1.61232151 ( f )
14.5077421 (d) 0.685303118 ( f )
6.98044078 (d) 0.268436640 ( f )
3.29945865 (d) 0.107370000
1.40559251 (d) 0.042950000
0.554811826 (d) 0.017180000
0.191053592 (d)
0.047778987 (d)

Gaussian nucleus exponent: 1.422456 á 108

Table 4. Fluorine basis set and Gaussian nucleus exponent. The
9s6p set is optimized for the ion F) and the 9s6p2d set is suitable for
calculations in molecules with ionic character

F), s, p and d exponents:

13874.6194 63.0771751 2.000
2081.83460 14.4880120 0.8000
474.024179 4.38060140
134.275393 1.45214460
43.7173394 0.461546462
15.7374155 0.126211456
6.04514678
1.24305124
0.339833174

Gaussian nucleus exponent: 5.35493 á 108

Table 5. Calculated bond lengths (re) and vibrational frequencies
(xe) for the ground state (X1S+) of CuF, AgF and AuF. The
experimental results are from Huber and Herzberg [39]. The
vibrational frequencies are calculated from the theoretical force
constants and the reduced masses from [39]. Experimental values
for AuF are not known to the authors

Number of
electrons correlated

re (AÊ ) xe (cm
)1)

CuF

NR SCF 1.823 563
NR MP2 18 1.754 606
NR MP2 26 1.751 612
R DHF 1.805 572
R MP2 18 1.728 627
R MP2 26 1.725 633
Exp. [39] 1.745 623

AgF

NR SCF 2.069 472
NR MP2 18 2.033 491
NR MP2 26 2.026 496
R DHF 2.029 491
R MP2 18 1.987 515
R MP2 26 1.977 521
Exp. [39] 1.983 513

AuF

NR SCF 2.146 443
NR MP2 18 2.113 458
NR MP2 26 2.103 463
R DHF 1.968 528
R MP2 18 1.916 571
R MP2 26 1.899 590
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not implemented in our program. Collins et al. [28] have
investigated the e�ect of BSSE in calculations on the
hydrides of the coinage metals. Using the counterpoise
method they found that the BSSE is negligible at the
SCF level, but gives bond lengths that are 0.01±0.02 AÊ

too short and vibrational frequencies that are up to
1.5% too high for the MP2 calculations. The basis sets
used in this work are comparable to theirs in size and
quality, but were used uncontracted. We expect the
BSSE to be of similar magnitude in our calculations
because the greater ¯exibility in our uncontracted basis
sets is mainly in the core. For MP2 a basis set with
more valence region ¯exibility would be required to
reduce BSSE, unfortunately the experimentation with
larger sets is beyond our present computational
resources.

We performed MP2 calculations with 18 (valence) as
well as 26 (valence + subvalence) electrons in the active
occupied space. In the large occupied space the
8 �nÿ 1�s2�nÿ 1�p6 subvalence electrons were added to
the 18 valence electrons. In relativistic AuF the 14 4f-
electrons have a higher energy than the 5s electrons, but
these were not included in the active space. As can be
seen from Table 5 the extension of the active space to
include the 8 subvalence electrons gave a signi®cant
change in the calculated properties, especially for rela-
tivistic AuF.

The di�erential relativistic e�ects as manifested in
these molecules are presented in Table 6. These e�ects
are de®ned through the formula DRP � P R ÿ P NR for the
property P, and we expect them to be quite insensitive to
BSSE. Collins et al. [28] used basis sets of the same
quality as ours and found BSSE for the coinage metal
hydrides to be less than 0.005 AÊ for DRre and 1% for
DRxe. The calculated relativistic bond contractions in
Table 6 are slightly larger for the MP2 than for the SCF
calculations, and this is an example of the well-known
non-additivity of relativistic and correlation e�ects
(See e.g. [28]). Using pseudopotential methods for AuF,
Schwerdtfeger et al. [34] have calculated the relativistic
e�ects on the bond length to 0.163 AÊ at the SCF level
and to 0.184 AÊ at the MP2 level. For the force constants
their DRke is 0.76 mdyn /AÊ and 0.92 mdyn/AÊ . These re-
sults may be compared with our fully relativistic calcu-
lations which give the relativistic e�ect as 0.178 AÊ and
0.204 AÊ for the bond length and 0.84 mdyn/AÊ �85 cmÿ1�
and 1.36 mdyn/AÊ �127 cmÿ1� for the force constants.

The fully relativistic calculation gives slightly larger DRP
for both properties, but the calculations are not directly
comparable owing to the di�erence in the description of
the wavefunctions.

It is also interesting to compare our results with the
very similar calculations by Collins et al. [28] on the
coinage metal hydrides. For AuH there is a relativistic
contraction of the bond length of 0.261 AÊ at the DHF
level, which is reduced to 0.214 AÊ for the MP2 result.
For AuF we have the opposite e�ect of correlation since
the contraction is increased from 0.178 AÊ (DHF) to
0.204 AÊ (MP2). Schwerdfeger et al. have analyzed the
relativistic contraction of the bondlength in 14 di�erent
diatomic gold compounds at the SCF level and found an
almost linear relationship between the relativistic con-
traction and the Pauling electronegativity of the ligand
[32]. The opposite e�ects of correlation for AuF and
AuH results in a much smaller di�erence in DRre for the
two diatomics at the MP2 level than for the uncorrelated
calculation. The mechanisms behind this are not imme-
diately clear. We note that at the non-relativistic level
MP2 reduces the bond distance by 0.12 AÊ for AuH but
only by 0.04 AÊ for AuF, while at the relativistic level, the
e�ect of MP2 correlation is a bond contraction of 0.07 AÊ

for both molecules. One interpretation is that with the
strong relativistic contraction of the Au electron distri-
bution the correlation of the Au electrons becomes
dominant, irrespective of ligand, and that this is re¯ected
in the similar MP2 contractions of the bond length.
However, the similarity might also be coincidental, and
owing to completely di�erent correlation mechanisms,
e.g. charge transfer excitations onto Au, which would be
of greater importance for AuF than for AuH. With our
present versions of the computer programs, we have no
possibility of carrying out a closer investigation of this at
the relativistic level, and we feel that no conclusions
should be drawn about this from a comparison at the
non-relativistic level. A program version presently under
development and scheduled for production in late 1997
will have more advanced facilities for wavefunction
analysis. It would certainly be interesting to investigate
the e�ect of correlation on relativistic bond lengths for
other gold compounds; unfortunately, this falls outside
the scope of the present work.

5 Conclusion

We have presented an algorithm for the calculation of
the energy correction from second-order perturbation
theory for a Kramers-restricted Dirac-Hartree-Fock
four-component wavefunction. The algorithm has been
developed in the spirit of the integral-driven direct SCF
scheme, where electron repulsion integrals are calculated
and used as they are needed, and not stored. This
eliminates the integral storage bottleneck encountered in
conventional MP2. As in NR calculations, the integral-
direct procedures may be successfully applied to calcu-
lations that would otherwise be impossible because of
limited storage capacity. This is especially true for
calculations where ¯exibility of the basis set is impor-
tant, and the calculations should be carried out without

Table 6. Relativistic e�ects for ground state (X1S+) CuF, AgF and
AuF at SCF and MP2 level (core or core and subvalence frozen).
Bond length contraction DRre in AÊ . Change in vibrational
frequencies DRxe in cm)1 and % of relativistic value

SCF MP2
18 electr. active

MP2
26 electr. active

DRre DRxe DRre DRxe DRre DRxe

CuF )0.018 9 (2%) )0.026 21 (3%) )0.026 21 (3%)
AgF )0.040 19 (4%) )0.046 24 (5%) )0.049 25 (5%)
AuF )0.178 85 (16%) )0.197 113 (20%))0.204 127 (22%)
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contraction, for example calculations of NMR param-
eters and electric ®eld gradients at the nuclei.

A number of high-quality four-component relativistic
calculations on molecules have been reported during the
last 10 years, but most studies of trends in relativistic
e�ects have been at the SCF level. We have performed
calculations for the ground state �1R�� of CuF, AgF and
AuF, and the comparison of our relativistic bond con-
traction for AuF at the SCF and MP2 level with earlier
calculations on AuH suggests that conclusions drawn at
the SCF level may need to be revised if one goes beyond
the independent particle model and includes correlation.
For the bond lengths and vibrational frequencies of the
coinage metal ¯uorides, there is non-additivity of rela-
tivistic and correlation e�ects. There is also a signi®cant
e�ect of leaving out the subvalence electrons in the
correlated space.
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